/* Copyright 2012 Dietrich Epp */ #include "filter.h" #include "param.h" #include "../include/fresample.h" #include #include #include #include #include #include namespace { /* Simple sinc function implementation. Note that this is the unnormalized sinc function, with zeroes at nonzero multiples of pi. */ constexpr double sinc(double x) { return std::abs(x) < 1e-8 ? 1.0 : std::sin(x) / x; } /* Modified Bessel function of the first kind of order 0, i0. Only considered valid over the domain [0,18]. This is the naive algorithm. In "Computation of Special Functions" by Shanjie Zhang and Jianming Jin, this technique is only used for 0 filter_calculate(std::size_t nsamp, std::size_t nfilt, double offset, double cutoff, double beta) { std::vector data(nsamp * nfilt); const auto yscale = 2.0 * cutoff / bessel_i0(beta); const auto xscale = (8.0 * std::atan(1.0)) * cutoff; for (std::size_t i = 0; i < nfilt; ++i) { const auto x0 = (nsamp - 1) / 2 + offset * i; for (std::size_t j = 0; j < nsamp; ++j) { const auto x = j - x0; const auto t = x * (2.0 / (nsamp - 2)); double y; if (t <= -1.0 || t >= 1.0) { y = 0.0; } else { y = yscale * bessel_i0(beta * sqrt(1.0 - t * t)) * sinc(xscale * x); } data[i * nsamp + j] = y; } } return data; } template void filter_calculate_integral(type* data, std::size_t nsamp, std::size_t nfilt, double offset, double cutoff, double beta) { const auto& filter = filter_calculate(nsamp, nfilt, offset, cutoff, beta); for (std::size_t i = 0; i < nfilt; ++i) { const auto sum = accumulate(begin(filter) + i * nsamp, begin(filter) + (i + 1) * nsamp, 0.0); const auto fac = static_cast(scale) / sum; auto err = 0.0; for (std::size_t j = 0; j < nsamp; ++j) { const auto y = filter[i * nsamp + j] * fac + err; const auto z = std::round(y); err = z - y; data[i * nsamp + j] = static_cast(z); } } } void lfr_filter_calculate_s16(std::int16_t* data, std::size_t nsamp, std::size_t nfilt, double offset, double cutoff, double beta) { if(nsamp <= 8) { filter_calculate_integral(data, nsamp, nfilt, offset, cutoff, beta); } else { filter_calculate_integral(data, nsamp, nfilt, offset, cutoff, beta); } } void lfr_filter_calculate_f32(float *data, std::size_t nsamp, std::size_t nfilt, double offset, double cutoff, double beta) { const auto& filter = filter_calculate(nsamp, nfilt, offset, cutoff, beta); transform(begin(filter), end(filter), data, [](const auto val){ return static_cast(val); }); } } lfr_filter::lfr_filter(lfr_param& param) { double dw, dw2, lenf, atten2, atten3, maxerror, beta; double ierror, rerror, error; double t, a, ulp; int align=8, max_oversample; param.calculate(); f_pass = param.param[LFR_PARAM_FPASS]; f_stop = param.param[LFR_PARAM_FSTOP]; atten = param.param[LFR_PARAM_ATTEN]; /* atten2 is the attenuation of the ideal (un-rounded) filter, maxerror is the ratio of a 0 dBFS signal to the permitted roundoff and interpolation error. This divides the "attenuation" into error budgets with the assumption that the error from each source is uncorrelated. Note that atten2 is measured in dB, whereas maxerror is a ratio to a full scale signal. */ atten2 = atten + 3.0; maxerror = exp((atten + 3.0) * (-log(10.0) / 20.0)); /* Calculate the filter order from the attenuation. Round up to the nearest multiple of the SIMD register alignment. */ dw = (8.0 * std::atan(1.0)) * (f_stop - f_pass); lenf = (atten2 - 8.0) / (4.57 * dw) + 1; nsamp = static_cast(std::ceil(lenf / align) * align); if (nsamp < align) nsamp = align; /* ======================================== Determine filter coefficient size. ======================================== */ /* We can calculate expected roundoff error from filter length. We assume that the roundoff error at each coefficient is an independent uniform variable with a range of 1 ULP, and that there is an equal roundoff step during interpolation. This gives roundoff error with a variance of N/6 ULP^2. Roundoff error is a ratio relative to 1 ULP. */ rerror = std::sqrt(nsamp * (1.0 / 6.0)); /* The interpolation error can be adjusted by choosing the amount of oversampling. The curvature of the sinc function is bounded by (2*pi*f)^2, so the interpolation error is bounded by (pi*f/M)^2. We set a maximum oversampling of 2^8 for 16-bit, and 2^12 for floating point. */ t = f_pass * (4.0 * std::atan(1.0)); a = 1.0 / 256; ierror = (t * a) * (t * a); ulp = 1.0 / 32768.0; /* We assume, again, that interpolation and roundoff error are uncorrelated and normal. If error at 16-bit exceeds our budget, then use floating point. */ error = (ierror * ierror + rerror * rerror) * (ulp * ulp); if (error <= maxerror * maxerror) { type = LFR_FTYPE_S16; ulp = 1.0 / 32768.0; max_oversample = 8; } else { type = LFR_FTYPE_F32; ulp = 1.0 / 16777216.0; max_oversample = 12; } /* Calculate the interpolation error budget by subtracting roundoff error from the total error budget, since roundoff error is fixed. */ ierror = maxerror * maxerror - (rerror * rerror) * (ulp * ulp); ierror = (ierror > 0) ? sqrt(ierror) : 0; if (ierror < ulp) ierror = ulp; /* Calculate oversampling from the error budget. */ a = (f_pass * (4.0 * std::atan(1.0))) / std::sqrt(ierror); log2nfilt = static_cast(std::ceil(std::log(a) * (1.0 / std::log(2.0)))); if (log2nfilt < 0) log2nfilt = 0; else if (log2nfilt > max_oversample) log2nfilt = max_oversample; /* ======================================== Calculate window parameters ======================================== */ /* Since we rounded up the filter order, we can increase the stop band attenuation or bandwidth without making the transition bandwidth exceed the design parameters. This gives a "free" boost in quality. We choose to increase both. If we didn't increase these parameters, we would still incur the additional computational cost but it would be spent increasing the width of the stop band, which is not useful. */ /* atten3 is the free stopband attenuation */ atten3 = (nsamp - 1) * 4.57 * dw + 8; t = (-20.0 / std::log(10.0)) * std::log(rerror * ulp); if (t < atten3) atten3 = t; if (atten2 > atten3) atten3 = atten2; else atten3 = 0.5 * (atten2 + atten3); /* f_pass2 is the free pass band */ dw2 = (atten3 - 8.0) / (4.57 * (nsamp - 1)); auto f_pass2 = f_stop - dw2 * (1.0 / (8.0 * std::atan(1.0))); if (atten3 > 50) beta = 0.1102 * (atten3 - 8.7); else if (atten3 > 21) beta = 0.5842 * std::pow(atten3 - 21, 0.4) + 0.07866 * (atten3 - 21); else beta = 0; setup_window(f_pass2, beta); } void lfr_filter::setup_window(double cutoff, double beta) { size_t esz = 1, align = 16, nfilt; if (nsamp < 1 || log2nfilt < 0) goto error; switch (type) { case LFR_FTYPE_S16: esz = sizeof(short); break; case LFR_FTYPE_F32: esz = sizeof(float); break; } nfilt = (1u << log2nfilt) + 1; if ((size_t) nsamp > (size_t) -1 / esz) goto error; if (((size_t) -1 - (align - 1) - sizeof(*this)) / nfilt < nsamp * esz) goto error; data.resize(nsamp * nfilt * esz + align - 1); delay = static_cast((nsamp - 1) / 2) << 32; switch (type) { case LFR_FTYPE_S16: lfr_filter_calculate_s16( reinterpret_cast(data.data()), nsamp, nfilt, 1.0 / static_cast(1 << log2nfilt), cutoff, beta); break; case LFR_FTYPE_F32: lfr_filter_calculate_f32( reinterpret_cast(data.data()), nsamp, nfilt, 1.0 / static_cast(1 << log2nfilt), cutoff, beta); break; } return; error: throw std::runtime_error{"Error in filter setup: lfr_filter::setup_window"}; } int lfr_filter::geti(LFR_INFO_TYPE iname, bool convert) const { switch(iname) { case LFR_INFO_DELAY: return delay * (1.0 / 4294967296.0); case LFR_INFO_FPASS: return f_pass; case LFR_INFO_FSTOP: return f_stop; case LFR_INFO_ATTEN: return atten; default: if(convert) { return static_cast(getf(iname, false)); } } return {}; } double lfr_filter::getf(LFR_INFO_TYPE iname, bool convert) const { switch(iname) { case LFR_INFO_DELAY: return static_cast(delay >> 32); case LFR_INFO_SIZE: return nsamp; case LFR_INFO_MEMSIZE: { int sz = nsamp * ((1 << log2nfilt) + 1); switch (type) { case LFR_FTYPE_S16: return sz * 2; case LFR_FTYPE_F32: return sz * 4; default: return {}; } } default: if(convert) { return geti(iname, false); } } return {}; } void lfr_filter::resample( lfr_fixed_t *pos, lfr_fixed_t inv_ratio, unsigned *dither, int nchan, void *out, lfr_fmt_t outfmt, int outlen, const void *in, lfr_fmt_t infmt, int inlen) { lfr_resample_func_t func; if (outfmt == LFR_FMT_S16_NATIVE && infmt == LFR_FMT_S16_NATIVE) { func = lfr_resample_s16func(nchan, this); if (!func) return; func(pos, inv_ratio, dither, out, outlen, in, inlen, this); } }